
samurai

Scattering AMplitudes from Unitarity-based

Reduction Algorithm at Integrand-level

P. Mastrolia, G. Ossola, T. Reiter, and F. Tramontano

Abstract

These documentation notes provide a general description of the

samurai library, designed for the automated numerical evaluation of

one-loop corrections to any scattering amplitudes. samurai is based

on the decomposition of the integrand according to the OPP-approach,

extended to accommodate an implementation of the generalized d-

dimensional unitarity-cuts technique, and uses a polynomial interpo-

lation exploiting the Discrete Fourier Transform. It can process inte-

grands with any number of external legs, written either as numerator

of Feynman diagrams or as product of tree level amplitudes and it can

be compiled in double or quadruple precision.

The package can be downloaded from:

http://cern.ch/samurai



1 Downloading and Installing samurai

All the files are contained in the archive samurai v1.0.tar.gz. The archive
contains the files for the samurai library [1], several examples of calculations,
and also the routines for the evaluation scalar integrals QCDLoop [2] and
OneLOop [3].

1. Download the archive samurai v1.0.tar.gz and extract the files. They
will be copied in a folder called /samurai.

2. Run the Install script. It will compile all useful routines and organize
them. All routines are written in Fortran 90 and the default compiler
is gfortran. In order to change compiler (or compiling options), the
user should edit all the makefile commands.

After running the Install script, you will find four subfolders within
the /samurai directory: the subdirectory named /libs will contain
all the libraries, namely the reduction routines in libsamurai.a, and
three libraries for the calculation of scalar integrals.

The folders named /avh olo 091110 and /QCDLoop-1.9 contain the
files required to produce the libraries for the scalar integrals. We in-
clude the latest version available (as of June 3rd, 2010). Updates can
be downloaded from the webpages of their authors.

Examples that reproduce all calculations described in the samurai pa-
per [1] can be found in separate subfolders in /examples. The Install
script compiles all the examples, with the exception of the “Six Quarks”
(that takes about 10 minutes to compile). The user can process it sep-
arately by typing make in the directory /examples/uussbb.

3. Run each process using the corresponding command process.exe. The
description of the files contained in one specific example is given in
Section 2.1.

2



2 Running samurai

In this section we will provide an introduction about using samurai and in-
terfacing it with various kind on numerators. The sequence for each process
should be as follow:

call initsamurai(imeth,isca,verbosity,itest)

call InitDenominators(nleg,Pi,msq,v0,m0,v1,m1,...,vlast,mlast)

call samurai(xnum,tot,totr,Pi,msq,nleg,rank,istop,scale2,ok)

call exitsamurai

To initialize the samurai library, one needs to choose the arguments of
the subroutine initsamurai

call initsamurai(imeth,isca,verbosity,itest)

specify the type of input to reduce (imeth), the routines for the numerical
evaluation the scalar integrals (isca), the details of the output (verbosity),
and the test to apply to the reconstruction:

imeth = ’diag’ or ’tree’
isca = 1 (QCDloop); 2 (OneLOop)
verbosity = 0 (nothing); 1 (coeffs); 2 (coeffs+s.i.); 3(coeffs+s.i.+tests)
itest = 0 (none); 1 (powertest); 2 (nntest); 3 (lnntest)

• imeth - samurai can reduce integrands of one-loop amplitudes de-
fined as numerator functions sitting on products of denominators, by
choosing imeth=diag (default option); or as products of tree-level am-

plitudes sewn along cut-lines, by choosing imeth=tree.

• isca - The user can trigger the use of QCDLoop [2] by assigning
isca=1; or the use of OneLOop [3] with isca=2.

• verbosity - The level of information printed in the file output.dat

can be chosen by increasing the value of verbosity:

verbosity=0, no output from the library;

verbosity=1, the coefficients are printed;

verbosity=2, the value of the MI’s are printed as well;

verbosity=3, the outcome of the numerical test appears.

3



• itest - This option is used to select the test to monitoring the quality
of the numerical reconstruction. The possibilities are itest=0,1,2,3

to have respectively none, the global (N = N)-test, the local (N = N)-
test, and the power-test.

The thresholds for the reconstruction tests can be changed by setting
their values in the file ltest.dat. The user is invited to copy this file
from the directory samurai to the directory where there is the first call
to initsamurai and edit it inserting the desired value for the limit of
the tests. The phase-space points failing the tests are stored in a file
called bad points.dat. In principle they could be re-processed by en-
hancing the numerical precision obtained by compiling the samurai li-
brary with quadruple precision options (ifort, lf95). While imeth=diag
supports all the options for itest, the choice imeth=tree allows only
itest=0,2. Details on the tests can be found in [1].

After selecting the routines for the scalar integrals and the reduction
technique, the user should select a phase-space point (this can optionally be
generated with Rambo [4]) and provide information about the integrand, that
is specified by its own numerator and denominators.

Optionally the denominators of the diagram to be reduced can be filled
with the help of the subroutine InitDenominators which generates the lists
of internal momenta Pi and squared masses msq characterizing each propa-
gator:

call InitDenominators(nleg,Pi,msq,v0,m0,v1,m1,...,vlast,mlast)

The arguments of the subroutine, labeled as input/output ([i/o]) according
to their role, are:

• nleg - [i]. The integer number of the external legs of the diagram,
corresponding to the number of denominators.

• Pi - [o]. The array Pi(i,m) contains the nleg four-vectors pi present
in the denominators of the integrand: we used the definition D̄i = (q̄ +
pi)

2
−m2

i
−µ2. In the notation Pi(i,m), the first index, i=0,...,nleg-1,

runs on the set of the denominators; while the second index m=1,...,4,
runs over the components of the vector, with the energy being given as
4th component.

4



• msq - [o]. The array msq(i), is the list of the squared masses that
appear in the propagators. The ordering i=0,...,nleg-1 is bound to
the list of momenta Pi(i,m).

• v0, m0 - [i]. The vector v0 and the mass m0 are assigned to the first
denominator.

• vlast, mlast - [i]. The vector vlast and the mass mlast are as-
signed to the last denominator.

The numerator of the diagram is defined an external function, whose
name can be decided by the user, but with fixed arguments. Here we adopt
the dummy name xnum.

• xnum - The complex function xnum(icut,q,mu2) is the integrand to
be reduced. The arguments of the function xnum(icut,q,mu2) are:
icut, an integer labeling the cut in which each digit corresponds to
a cut-denominator in decreasing order (ex. 53210, 4210, 321); q, the
virtual four-momentum, q (with the energy given as 4th component);
and mu2 the extra-dimensional parameter, µ2.

When imeth=diag, xnum is expected to have the form of a numerator,
hence being polynomial in q and µ2. In this case xnum is a unique
function to be processed at every level of the top-down reduction, and
does not depend on the considered cut.

When imeth=tree, xnum is expected to be formed by the product of
tree-amplitudes, therefore it also contains the un-cut propagators. In
this case, xnum is not unique, but should change according to the con-
sidered cut. Therefore, the value of icut yields a selective access to
the proper integrand within the same function.

Having defined the integrand, xnum, and the corresponding denominators
characterized by Pi and msq, the actual reduction is performed by the library
samurai,

call samurai(xnum,tot,totr,Pi,msq,nleg,rank,istop,scale2,ok)

which writes the total result of the reduction in tot. For convenience, the
rational term that is part of tot is also separately stored in totr. Here is
detailed description of each argument:

5



• xnum - [i]. Already defined.

• tot - [o]. The complex variable tot contains the final result for the
integrated amplitude of numerator xnum. The finite part, that also
includes the rational term, will be stored in tot(0), while tot(-1)

and tot(-2) contain the single and double poles, respectively.

• totr - [o]. For the purpose of comparisons and debugging, we also
provide the rational part totr alone. This complex number is the
sum of all contributions coming from integrals in shifted dimensions,
namely all contributions that contain a dependence from µ2 in the
reconstructed integrand.

• nleg - [i]. Already defined.

• Pi - [i]. Already defined.

• msq - [i]. Already defined.

• rank - [i]. This integer value is the maximum rank of the numerator.
This information is extremely valuable in order to optimize the reduc-
tion and improve the stability of the results. Using this information, we
can simplify the reconstruction of the numerator by eliminating contri-
butions that do not appear in the reduction. If the information about
the rank of the integrand is not available, rank should be set equal to
nleg.

• istop - [i]. This flag stops the reduction at the level requested by
the user. istop=5,4,3,2,1 will interrupt the calculation after de-
termining pentagon-, box-, triangle-, bubble-, and tadpole-coefficients
respectively. This procedure can be particularly useful to improve the
precision of calculations when we know a priori that a particular set of
integrals does not contribute.

• scale2 - [i]. This is the scale (squared) that is used in the evaluation
of scalar integrals.

• ok - [o]. This logical variable carries information about the goodness
of the reconstruction. The default values is ok=true, and it is set to
ok=false when the reconstruction test fails.

6



As stated in Ref. [1], the generic one-loop integrand can be polynomial
in ǫ up to the second-order. Each coefficient of the ǫ-decomposition can
be assigned to a specific function, i.e. xnum0, xnum1, xnum2, which can be
independently processed.

2.1 A simple example – Rank 6 tensor

We describe here the details of the simplest example that we provide with
our code. This should be used as a first introduction to samurai. More
advanced options and more involved examples are discussed in the paper.

There are two files that are relevant for this example: process.f90 is the
main program in which we set up the arguments, we choose a phase space
point, select the momenta and masses in the denominators and finally we call
the reduction with a specific numerator function; mxnum.f90 that contains
the numerator function xnum.

Here is the list of operations contained in process.f90:

1. Choose the arguments: select the four values for imeth (method), isca
(routines for scalar integrals), verbosity (printout), and itest (test on
the reconstruction) as explained in the previous Section. The command

call initsamurai(imeth,isca,verbosity,itest)

will pass the information to the rest of the program.

2. Choose the configuration of the external/internal legs. The external
momenta can be chosen by the user or generated with Rambo. They are
called vecs. Starting from those, the user should define the internal
momenta in the denominators, labeled by Vi(:), and the corresponding
squared masses msq(i).

3. Call samurai: the first argument is the name of the numerator func-
tion, to whom we gave the dummy name xnum (and it is contained in
the file mxnum.f90). The command

call samurai(xnum,tot,totr,Vi,msq,nleg,rank,istop,scale2,ok)

will return the result in the array tot: tot(0) will contain the finite
part, tot(-1) the pole 1/ǫ and tot(-2) the double pole 1/ǫ2.

7



The rational part is already summed within tot(0); however, for the
purpose of testing and debugging, it is also returned in the variable
totr.

The logical variable ok contains the information about the outcome of
the reconstruction test. If the value returned is .false., the result
is not safe and should be discarded or processed again with higher
precision.

For practical calculations, this whole process should be included in a loop
over a sample of phase space points. The procedure can be mimicked in the
example by changing the parameter nevt.

Some examples make use of scalar and spinor products for the con-
struction of the numerator. We provide some useful routines in the file
kinematic.f90.

References

[1] P. Mastrolia, G. Ossola, T. Reiter, and F. Tramontano, samurai.

[2] R. K. Ellis and G. Zanderighi, “Scalar one-loop integrals for QCD,”
JHEP 02 (2008) 002, 0712.1851.

[3] A. van Hameren, C. G. Papadopoulos, and R. Pittau, “Automated
one-loop calculations: a proof of concept,” JHEP 09 (2009) 106,
0903.4665.

[4] R. Kleiss, W. J. Stirling, and S. D. Ellis, “A NEW MONTE CARLO
TREATMENT OF MULTIPARTICLE PHASE SPACE AT
HIGH-ENERGIES,” Comput. Phys. Commun. 40 (1986) 359.

8


